Proteome coverage prediction with infinite Markov models

نویسندگان

  • Manfred Claassen
  • Ruedi Aebersold
  • Joachim M. Buhmann
چکیده

MOTIVATION Liquid chromatography tandem mass spectrometry (LC-MS/MS) is the predominant method to comprehensively characterize complex protein mixtures such as samples from prefractionated or complete proteomes. In order to maximize proteome coverage for the studied sample, i.e. identify as many traceable proteins as possible, LC-MS/MS experiments are typically repeated extensively and the results combined. Proteome coverage prediction is the task of estimating the number of peptide discoveries of future LC-MS/MS experiments. Proteome coverage prediction is important to enhance the design of efficient proteomics studies. To date, there does not exist any method to reliably estimate the increase of proteome coverage at an early stage. RESULTS We propose an extended infinite Markov model DiriSim to extrapolate the progression of proteome coverage based on a small number of already performed LC-MS/MS experiments. The method explicitly accounts for the uncertainty of peptide identifications. We tested DiriSim on a set of 37 LC-MS/MS experiments of a complete proteome sample and demonstrated that DiriSim correctly predicts the coverage progression already from a small subset of experiments. The predicted progression enabled us to specify maximal coverage for the test sample. We demonstrated that quality requirements on the final proteome map impose an upper bound on the number of useful experiment repetitions and limit the achievable proteome coverage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Validation of Proteome Measurements

Proteomics is a branch in biology that aims to comprehensively characterize a proteome. Mass spectrometry based proteomics has proven to be the most powerful approach to achieve this goal. This thesis introduces statistical concepts to optimally design and validate shotgun proteomics experiments and thereby enables to efficiently achieve reliable and extensive proteome coverage. The first part ...

متن کامل

Evaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes

Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded  DNA virus. There were two approaches for prediction of each Markov Model parameter,...

متن کامل

Max-Margin Infinite Hidden Markov Models

Infinite hidden Markov models (iHMMs) are nonparametric Bayesian extensions of hidden Markov models (HMMs) with an infinite number of states. Though flexible in describing sequential data, the generative formulation of iHMMs could limit their discriminative ability in sequential prediction tasks. Our paper introduces maxmargin infinite HMMs (M2iHMMs), new infinite HMMs that explore the max-marg...

متن کامل

Statistical Regularization and Qualitative Constraints

Comprehensive characterization of a proteome defines a fundamental goal in proteomics. In order to maximize proteome coverage for a complex protein mixture, i.e. to identify as many proteins as possible, various different fractionation experiments are typically performed and the individual fractions are subjected to mass spectrometric analysis. The resulting data are integrated into large and h...

متن کامل

ON THE INFINITE ORDER MARKOV PROCESSES

The notion of infinite order Markov process is introduced and the Markov property of the flow of information is established.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2009